Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

TR10: $100 Genome

Han Cao's nanofluidic chip could cut DNA sequencing costs dramatically.

Nanoscale sorting: A tiny nanofluidic chip is the key to BioNanomatrix’s effort to sequence a human genome for just $100.
Bionanomatrix

In the corner of the small lab is a locked door with a colorful sign taped to the front: "$100 Genome Room--Authorized Persons Only." BioNanomatrix, the startup that runs the lab, is pursuing what many believe to be the key to personalized medicine: sequencing technology so fast and cheap that an entire human genome can be read in eight hours for $100 or less. With the aid of such a powerful tool, medical treatment could be tailored to a patient's distinct genetic profile.

Despite many experts' doubt that whole-genome sequencing could be done for $1,000, let alone a 10th that much, BioNanomatrix believes it can reach the $100 target in five years. The reason for its optimism: company founder Han Cao has created a chip that uses nanofluidics and a series of branching, ever-narrowin­g channels to allow researchers, for the first time, to isolate and image very long strands of individual DNA molecules.

Advertisement

If the company succeeds, a physician could biopsy a cancer patient's tumor, sequence all its DNA, and use that information to determine a prognosis and prescribe treatment-- all for less than the cost of a chest x-ray. If the ailment is lung cancer, for instance, the doctor could determine the particular genetic changes in the tumor cells and order the chemo­therapy best suited to that variant.

Cao's chip, which neatly aligns DNA, is essential to cheaper sequencing because double-stranded DNA, when left to its own devices, winds itself up into tight balls that are impossible to analyze. To sequence even the smallest chromosomes, researchers have had to chop the DNA up into millions of smaller pieces, anywhere from 100 to 1,000 base pairs long. These shorter strands can be sequenced easily, but the data must be pieced back together like a jigsaw puzzle. The approach is expensive and time consuming. What's more, it becomes problematic when the puzzle is as large as the human genome, which consists of about three billion pairs of nucleo­tides. Even with the most elegant algorithms, some pieces get counted multiple times, while others are omitted completely. The resulting sequence may not include the data most relevant to a particular disease.

Video

In contrast, Cao's chip untangles stretches of delicate double-stranded DNA molecules up to 1,000,000 base pairs long--a feat that researchers had previously thought impossible. The series of branching channels gently prompts the molecules to relax a bit more at each fork, while also acting as a floodgate to help distribute them evenly. A mild electrical charge drives them through the chip, ultimately coaxing them into spaces that are less than 100 nanometers wide. With tens of thousands of channels side by side, the chip allows an entire human genome to flow through in about 10 minutes. The data must still be pieced together, but the puzzle is much smaller (imagine a jigsaw puzzle of roughly 100 pieces versus 10,000), leaving far less room for error.

Next Page »

  • Page
  • 1
  • 2

Related Articles:

Nanofluidics Get More Complex

A new three-dimensional device sorts and separates nanoparticles by size.

Prachi Patel

Speed-Reading DNA Inches Closer

A British company has demonstrated an important step for a new sequencing technique.

Katherine Bourzac

A Hole in the Genome

A small chunk of DNA linked to schizophrenia, mental retardation, and autism may change the way we think about disease.

Emily Singer