Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

10 Emerging Technologies That Will Change Your World

(Page 3 of 11)

RON WEISS
Synthetic Biology

Perched on the gently sloping hills of Princeton University's brick and ivy campus, Ron Weiss's biology laboratory is stocked with the usual array of microscopes, pipettes, and petri dishes. Less typical is its location: crammed into the Engineering Quadrangle, it stands out among the electrical and mechanical engineering labs. Yet it's an appropriate spot for Weiss. A computer engineer by training, he discovered the allure of biology during graduate school-when he began programming cells instead of computers. In fact, he began to program cells as if they were computers.

Weiss is one of just a handful of researchers delving into the inchoate field of synthetic biology, assiduously assembling genes into networks designed to direct cells to perform almost any task their programmers conceive. Combined with simple bacteria, these networks could advance biosensing, allowing inspectors to pinpoint land mines or biological weapons; add human cells, and researchers might build entire organs for transplantation. "We want to create a set of biological components, DNA cassettes that are as easy to snap together, and as likely to function, as a set of Legos," says Tom Knight, an MIT computer-engineer-cum-biologist, and the graduate advisor who turned Weiss on to the idea.

Next Page »

Related Articles:

T-Rays from Superconductors

A device from Argonne National Lab takes a fresh approach to generating t-rays.

Don Monroe