Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Diffusion Tensor Imaging

(Page 2 of 2)

Lim is pushing the technology even further by combining it with findings from other fields, such as genetics, to unravel the mysteries of neurological and psychiatric disorders. Lim’s group has found, for instance, that healthy people with a genetic risk for developing Alzheimer’s disease have tiny structural defects in specific parts of the brain that are not shared by noncarriers. How these defects might be linked to the neurological problems of Alzheimer’s isn’t clear, but the researchers are trying to find the connection.

Lim and others also continue to refine DTI itself, striving for an even closer look at the brain’s microarchitecture. For example, current DTI techniques can easily image brain areas with large bundles of fibers all moving in the same direction, such as the corpus callosum, which connects the two hemispheres of the brain. But it has difficulty with areas such as the one where fibers leave the corpus callosum for other parts of the brain, which is a tangle of wires.

Researchers hope tools for studying white matter, like DTI, will help illuminate the mysteries of both healthy and diseased brains. Lim believes his own research into diseases like schizophrenia and Alzheimer’s could yield better diagnostics within 10 to 20 years – providing new hope for the next generation of patients.

OTHER PLAYERS
DTI

Peter Basser – Development of higher-resolution diffusion imaging techniques
National Institute of Child Health and Human Development

Aaron Field – Neurosurgery planning
University of Wisconsin-Madison

Michael Moseley – Assessment and early treatment of stroke
Stanford University

 

 
  • Page
  • 1
  • 2