Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


TR10: Atomic Magnetometers

John Kitching’s tiny magnetic-field sensors will take MRI where it’s never gone before.


Shrinking sensors: A completed magnetometer built by NIST physicists is shown above. It consists of a small infrared laser (glued to a gold-coated plate), the cesium-filled cell, and a light detector.
Jim Yost; Courtesy of John Kitching

Shrinking sensors: A completed magnetometer built by NIST physicists is shown above. It consists of a small infrared laser (glued to a gold-coated plate), the cesium-filled cell, and a light detector.

Magnetic fields are everywhere, from the human body to the metal in a buried land mine. Even molecules such as proteins generate their own distinctive magnetic fields. Both magnetic resonance imaging (MRI), which yields stunningly detailed images of the body, and nuclear magnetic resonance spectroscopy (NMR), which is used to study proteins and other compounds such as petroleum, rely on magnetic information. But the sensors currently used to detect these faint but significant magnetic fields all have disadvan­tages. Some are portable and cheap but not very sensitive; other­s are highly sensitive but stationary, expensive, and power-hungry.

Now John Kitching, a physicist at the National Institute of Standards and Technology in Boulder, CO, is developing tiny, low-power magnetic sensors almost as sensitive as their big, expensive counterparts. About the size of a fat grain of rice, the sensors are called atomic magnetometers. Kitching hopes that they will one day be incorporated into everything from portable MRI machines to faster and cheaper detectors for unexploded bombs.

The tiny sensors have three key components, stacked vertically on top of a silicon chip. An off-the-shelf infrared laser and an infrared photodetector sandwich a glass-and-silicon cube filled with vaporized cesium atoms. In the absence of a magnetic field, the laser light passes straight through the cesium atoms. In the presenc­e of even very weak magnetic fields, though, the atoms’ alignment changes, allowing them to absorb an amount of light proportional to the strength of the field. This change is picked up by the photodetector. “It’s a simple configuration with extremely good sensitivity,” Kitching says.

Atomic magnetometers have been around for about 50 years; most have large, sensitive vapor cells, about the size of soda cans, made using glassblowing techniques. The most sensitive of these can detect fields on the order of a femtotesla–about one-fifty-billionth the strength of Earth’s magnetic field. Kitching’s innovation was to shrink the vapor cell to a volume of only a few cubic millimeters, decreasing power usage while keeping performance comparable.

Working with five other physicists, Kitching makes the vapor cells using micromachining techniques. They begin by using a combination of lithography and chemical etching to punch square holes three millimeters across into a silicon wafer. Then they clamp the silicon to a slip of glass and create a bond using high heat and a voltage, turning the square hole into a topless box with a glass bottom.

Inside a vacuum chamber, they use a tiny glass syringe to fill the box with vaporized cesium atoms; then they seal the box with another slip of glass at high heat. (This must be done in a vacuum because cesium reacts vigorously with water and oxygen.) Next, the physicists mount the finished vapor cell on a chip, along with the infrared laser and the photodetector. They pass a current through thin conductive films on the top and bottom of the cell to produce heat, which keeps the cesium atoms vaporized.

Kitching currently builds magnetometers a few at a time in the lab, but he has designed them with bulk manufacturing in mind. Many copies of each component are carved out simultaneously from a single silicon wafer. Several wafers, each containing multiple copies of a different component, could be layered one on top of the other. Then the stack could be sliced into multiple magnetometers.

Next Page »

  • Page
  • 1
  • 2

Katherine Bourzac


I'm a freelance journalist based in San Francisco. Before going freelance, I was MIT Technology Review's material science editor; and I graduated from MIT's Science...
See full bio »