Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Now Available: Innovators Under 35 2013 See The 2013 List »

35 Innovators Under 35

Joyce Poon, 32

A tiny roller coaster for light could help keep data ­centers cool

University of Toronto

Illustration by Michael Gillette

Optical communications could be a boon for data centers, reducing electricity use and heat buildup by replacing electronic signals with light signals. But the technology has been cost-effective only over distances of a kilometer or more, and using it in data centers would mean sending signals mere meters or centimeters. Joyce Poon may have solved the problem by creating new optical modulators with microscopic loop-the-loops through which light can shuttle data between servers and even from chip to chip within a single server.

To make light-based data communications work over short distances, Poon, an assistant professor of electrical and computer engineering at the University of Toronto, knew she needed to come up with a much smaller version of an optical modulator, a device that converts an electronic signal into an optical one. She designed tiny rings that can be built onto computer chips. When laser light is sent into a ring, it races around the ring over and over before a bit of it emerges through a waveguide at the bottom. The trick was to control how much light came out. Other researchers working with micro-rings have tried to do that by adjusting the properties of the ring, in order to alter the length of the light’s path or the amount of light the ring absorbs. Poon realized she could leave the ring alone and simply control the gateway between the ring and the rest of the chip.

The resulting optical modulator can be both faster and more efficient. With a team from IBM, Poon is working to create a version that is competitive with today’s optical data rates.

The jump to optical data transmission in servers can’t come soon enough. Data centers consumed at least 200 billion kilowatt-hours’ worth of power in 2010, and the proliferation of smartphones and cloud storage is only going to push that higher, driving up costs and the risk of heat-related outages.

Neil Savage

2012 TR35 Winners

Sarbajit Banerjee (video)

Windows that block heat—but let it through when you want them to

Mircea Dincă

Using sponges to improve and store alternative fuels

Prashant Jain

Tuning nanocrystals to make tinier, more efficient switches for optical computing and solar panels

Nanshu Lu (video)

Soft, flexible electronics bond to skin and even organs for better health monitoring

Joyce Poon (video)

A tiny roller coaster for light could help keep data ­centers cool

Pratheev Sreetharan (video)

Mass-producible tiny machines snap into place like objects in a pop-up book

Bozhi Tian (video)

Artificial tissue that can monitor and improve health down to the level of individual cells

Zheng Wang (video)

Slowing light to help chips cope with optical data

Baile Zhang

A new type of invisibility cloak made from a common material can work with larger objects

See This Years' Winners

More Innovators Under 35