Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Now Available: Innovators Under 35 2013 See The 2013 List »

Scott Gaynor, 32

Devises processes used to make polymers with improved properties

Dow Chemical

For Scott Gaynor, hunting for new polymers in the lab is “just like the hunting I did as a boy: you never know what’s behind the next tree.” As assistant director of the Macromolecular Engineering Laboratory at Carnegie Mellon University, Gaynor discovered catalysts that led to a new technology for synthesizing versatile and customizable polymers. Gaynor then played a lead role in developing the process to make polymers that could be used in everything from coatings to microelectronics to cosmetics. The technology is now being investigated by dozens of manufacturers worldwide for use in commercial applications. The process, “atom transfer radical polymerization,” is more tolerant of water, dust, and other impurities than other polymerization processes, a plus in industrial settings. Gaynor, who holds 10 patents and has three more pending, joined Dow Chemical in 2000, where he has developed new techniques to synthesize variants of common plastics, with improved properties. Gaynor is now preparing light-emitting polymers that could result in video displays that are thinner, sharper, and brighter than current flat-panel liquid-crystal displays.

2003 TR35 Winners

Scott Backhaus

Invented a novel, high-efficiency engine powered by sound waves

Zhenan Bao

Fabricates organic semiconductors used in flexible and cheap electronic devices

Marcela Bilek

Designs coatings to improve implanted medical devices and industrial tools

Daniel Bond

Turns sea muck into fuel cell power plants

Michael Bowman

Builds microturbines that could become the power plant of choice in many settings

Colin Bulthaup

Developed new fabrication methods that could slash the cost of chip manufacturing

Karen Burg

Engineered a minimally invasive process to rebuild tissue for breast cancer survivors

Xiangfeng Duan

Transforms nanowires into incredibly small transistors for powerful, flexible computers

Stephen Empedocles

Formulates business strategy for one of nanotechs leading startups

Vladislav Gavrilets

Designs flight control technology that could lead to unmanned autonomous helicopters

Scott Gaynor

Devises processes used to make polymers with improved properties

Cary Gunn

Shrinks optical circuitry to speed transmissions on phone and Internet networks

Yu Huang

Fashions three-dimensional grids of nanowires that act as electronic circuits

Jordan Katrine

Makes higher-density hard drives using magnetic nanomaterials

Krishna Kumar

Improves the stability and effectiveness of protein-based drugs

David M. Lynn

Synthesizes polymers that are better able to deliver therapeutic genes

David A. Muller

Images the individual atom that are critical to a transistors electronic properties

Yasunobu Nakamura

Achieved a breakthrough that could help make quantum computing a reality

Balaji Narasimhan

Devises time-release polymers to replace multiple vaccine injections

Ravikanth Pappu

Fights credit card forgery with glass-bead “keys”

Ainissa G. Ramirez

Formulated an advanced universal solder for electronics and optics

Christian Rehtanz

Adds smarts to high-voltage power lines so they can deliver more electricity

Manfred Stefener

Constructs small fuel cells to efficiently power laptop computers

Claire Tomlin

Writes software that could alleviate air congestion and lead to far fewer delays at airports

Stephen Turner

Built a tiny device that greatly speeds up DNA sequencing

S. Travis Waller

Writes algorithms that determine why traffic jams form and how to ease them

Ralf Wehrspohn

Fabricates nanotube crystals that can route optical telecommunications signals faster than competing chips

Peidong Yang

Assembles nanowires that could revolutionize lasers and computers

Advertisement

More Innovators Under 35: