Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Now Available: Innovators Under 35 2013 See The 2013 List »

Christian Rehtanz, 35

Adds smarts to high-voltage power lines so they can deliver more electricity

ABB

ELECTRIC-POWER grids are often categorized as the world’s largest machines, but they are not the most sophisticated. Grid operators have little data on how weather, shifting electricity consumption, and other factors affect power flows minute to minute over the grids’ high-voltage main lines. So to be safe, utilities cap the power a line carries at well below its physical limits—a drawback, given rising electricity demands. To increase capacity, grids need more smarts, and that’s what Christian Rehtanz gave them, at Zürich, Switzerland-based ABB. Rehtanz devised algorithms that use information from sensors distributed around the grid to monitor a power line—or several lines in a transmission corridor—and calculate in real time how much power it can safely carry. He then led a team that turned these algorithms into a commercial monitoring, protection, and control system for utilities, dubbed PSGuard. Norwegian utility Statnet is already testing Rehtanz’s hardware and software on a massive high-voltage corridor to Sweden, and Rehtanz predicts Statnet will be pushing 10 percent more megawatts by year’s end— potentially enough to supply electricity to an additional 100,000 homes. Rehtanz has since powered up, too; he now leads technology development for ABB’s 8,000-person global power systems business.

2003 TR35 Winners

Scott Backhaus

Invented a novel, high-efficiency engine powered by sound waves

Zhenan Bao

Fabricates organic semiconductors used in flexible and cheap electronic devices

Marcela Bilek

Designs coatings to improve implanted medical devices and industrial tools

Daniel Bond

Turns sea muck into fuel cell power plants

Michael Bowman

Builds microturbines that could become the power plant of choice in many settings

Colin Bulthaup

Developed new fabrication methods that could slash the cost of chip manufacturing

Karen Burg

Engineered a minimally invasive process to rebuild tissue for breast cancer survivors

Xiangfeng Duan

Transforms nanowires into incredibly small transistors for powerful, flexible computers

Stephen Empedocles

Formulates business strategy for one of nanotechs leading startups

Vladislav Gavrilets

Designs flight control technology that could lead to unmanned autonomous helicopters

Scott Gaynor

Devises processes used to make polymers with improved properties

Cary Gunn

Shrinks optical circuitry to speed transmissions on phone and Internet networks

Yu Huang

Fashions three-dimensional grids of nanowires that act as electronic circuits

Jordan Katrine

Makes higher-density hard drives using magnetic nanomaterials

Krishna Kumar

Improves the stability and effectiveness of protein-based drugs

David M. Lynn

Synthesizes polymers that are better able to deliver therapeutic genes

David A. Muller

Images the individual atom that are critical to a transistors electronic properties

Yasunobu Nakamura

Achieved a breakthrough that could help make quantum computing a reality

Balaji Narasimhan

Devises time-release polymers to replace multiple vaccine injections

Ravikanth Pappu

Fights credit card forgery with glass-bead “keys”

Ainissa G. Ramirez

Formulated an advanced universal solder for electronics and optics

Christian Rehtanz

Adds smarts to high-voltage power lines so they can deliver more electricity

Manfred Stefener

Constructs small fuel cells to efficiently power laptop computers

Claire Tomlin

Writes software that could alleviate air congestion and lead to far fewer delays at airports

Stephen Turner

Built a tiny device that greatly speeds up DNA sequencing

S. Travis Waller

Writes algorithms that determine why traffic jams form and how to ease them

Ralf Wehrspohn

Fabricates nanotube crystals that can route optical telecommunications signals faster than competing chips

Peidong Yang

Assembles nanowires that could revolutionize lasers and computers

Advertisement

More Innovators Under 35: