Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Now Available: Innovators Under 35 2013 See The 2013 List »

Adam Arkin, 33

Lawrence Berkeley National Laboratory

So far, says a recent Natureeditorial, molecular biology has produced only a "cartoon representation" of life’s myriad molecular pathways. And although "superb papers have been written for the purpose of adding a single arrow to an existing cartoon," Nature’s editors concluded that the agenda for the next century is to add numbers to each arrow, and then equations to connect the arrows—only then will we learn to control specific processes when they go awry, as in cancer.

In a study hailed as a "benchmark for all future papers in the area," Adam Arkin created a computer model connecting the arrows of the genetic circuit that controls when a bacteriophage virus decides to begin reproducing. Biologists had advanced several reasonable theories, but Arkin and his Stanford advisor Harley McAdams proved that the virus decision is in fact determined largely by chance chemical events.

A rising star in Lawrence Berkeley’s physical biosciences division, Arkin wants to go way beyond viruses, creating computer simulations that explain how genetic "switches" are thrown during human development to orchestrate the formation of our bodies. To get there, Arkin is developing a generalized modelling program known as Bio/Spice, named after software used by engineers to analyze electrical circuits. Arkin’s work foreshadows the biology of the next decades, when researchers begin to understand and control the cell’s own circuitry.


More Innovators Under 35: