Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Now Available: Innovators Under 35 2013 See The 2013 List »

David Clemmer, 34

Indiana University

Proteins are the workhorses of biology. In their active form, they are folded up into complex three-dimensional molecules, and understanding how folding happens is one of biology’s enduring problems. Solving it could lead to safer and more effective drugs--even therapeutic proteins designed from scratch. In this search, an important new technology is David Clemmer’s method of sorting molecules, including proteins, according to their shapes.

Rather than working with proteins in their normal, liquid state, as others typically do, Clemmer observes these molecules in the gas phase as they travel across an electrically charged space. Travel times can be used to construct a theoretical model of how the protein is configured and of the forces that determine how a protein folds.

Clemmer’s method also could provide a screening technique for combinatorial chemistry--a drug discovery process that produces large mixtures of compounds. Methods for sorting mixtures of isomers (compounds that have the same mass but have different shapes and often different biological activity) are slow, relying on complex data that are difficult to interpret. Clemmer’s approach makes it possible to sort large mixtures of isomers in seconds. Combined with other new drug-discovery methods, the reward will be a tremendous increase in the rate of screening molecules that have therapeutic potential.


More Innovators Under 35: