Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Now Available: Innovators Under 35 2013 See The 2013 List »

Erik Bakkers, 34

Combining semiconductors

Philips Research Laboratories

Silicon chips have revolutionized electronics, but for certain purposes, such as radio frequency transmission, chips made from compound semiconductors like gallium arsenide or indium phosphide work much better. Erik Bakkers of Philip­s Research Laboratories in Eindhoven, the Netherlands, has found a way to mix semi­conductors on a single chip.


Different semiconductors are normally incompatible, partly because they expand at different rates when heated. Combining them thus leads to physical strain that reduces performance. Bakkers solved the problem by building circuits out of nano­wires. Because the point of contact between the different semiconductors is small--just a few tens of nanometers--there is no strain.


To grow a nano­wire, Bakker­s places a gold nanoparticle on top of a silicon wafer. Then he exposes the wafer to a vapor of, say, ­gallium arsenide; the nano­particle cata­lyzes the growth of a gallium arsenide nanowire.


This technique opens up possibilities for multipurpose chips that could be used in wireless devices and other applications. It could also make it easier for engineers to take advantage of the inherent properties of compound semiconductors to create highly efficient LEDs, faster transistors, optical interconnects to rapidly shunt data around chips, or fast, highly sensitive biosensors to detect diseases.


--Neil Savage

2007 TR35 Winners

Erik Bakkers

Combining semiconductors

Adam Cohen

Making molecules motionless

Ju Li

Modeling designer materials

Advertisement

More Innovators Under 35: