Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Now Available: Innovators Under 35 2013 See The 2013 List »

Andrew Houck, 30

Preserving information for practical quantum computing

Princeton University

Among the most promising approaches to building a quantum computer is using superconducting circuits as quantum bits, or qubits. But controlling the qubit without destroying the information tucked inside it is a major challenge.

Andrew Houck, an assistant professor of electrical engineering, developed a superconducting qubit called a transmon that helps keep quantum information intact.

The data in a qubit--0, 1, or a quantum superposition of the two--is represented using different energy and phase states in the circuit, but stray electrical fields can easily destroy these states during readout. Instead of targeting the source of interference, as other researchers have, Houck armored the qubit, adding a capacitor that makes it difficult for stray electrons to interfere.

Getting data from the transmon is the next hurdle. Usually the qubit is read directly, by measuring changes in charge, but that's not possible with the transmon. So Houck coupled it to a microwave photon, which interacts differently with the qubit depending on its state. By measuring the photon, it's possible to infer the qubit's state and thus extract its information.

While the quantum data in transmons lasts a few microseconds--an order of magnitude longer than in previous qubits--there's still a way to go before millions of qubits can be used to make a large-scale quantum computer. --Anne-Marie Corley

2009 TR35 Winners

Andrea Armani

Sensitive optical sensors detect single molecules

James Carey (video)

Using “black silicon” to build inexpensive, super-sensitive light detectors

Adam Dunkels

Minimal wireless-networking protocols allow almost any device to communicate over the Internet

Kevin Fu (video)

Defeating would-be hackers of radio frequency chips in objects from credit cards to pacemakers  

Andrew Houck

Preserving information for practical quantum computing

Shahram Izadi (video)

An intuitive 3-D interface helps people manage layers of data

Ali Javey

“Painting” nanowires into electronic circuits

Anat Levin

New cameras and algorithms capture the potential of digital images

Pranav Mistry (video)

A simple, wearable device enhances the real world with digital information

Aydogan Ozcan

Inexpensive chips and sophisticated software could make microscope lenses obsolete

Vera Sazonova

World’s smallest resonator could lead to tiny mechanical devices

Elena Shevchenko

Assembling nanocrystals to create made-to-order materials

Dawn Song

Defeating malware through automated software analysis

Andrea Thomaz (video)

Robots that learn new skills the way people do

Adrien Treuille (video)

Complex physics simulations that can run on everyday PCs

Advertisement

More Innovators Under 35: