Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Now Available: Innovators Under 35 2013 See The 2013 List »

Michael McAlpine, 32

Powering electronics with human motion

Princeton University

Credit: Ryan Donnell

Michael McAlpine has developed a flexible material that produces record amounts of energy when subjected to mechanical pressure. It could turn the action of a patient's lungs into enough energy to power an implanted medical device; forces produced by walking around could be sufficient to drive portable electronics.

In 2008, as a new assistant professor at Princeton, McAlpine started thinking about pacemakers: was there a way to harvest power from the lungs as people inhaled and exhaled, so that the batteries wouldn't need to be surgically replaced every few years? Drawing on previous experience in making nanowire electronics and sensors on sheets of plastic, McAlpine began experimenting with PZT, a well-known material that is piezoelectric--able to convert physical stress into electricity. To make a flexible device, he deposits the PZT onto a hard substrate before carving the material into tiny ribbons. Then he uses chemicals to release the ribbons of PZT from the substrate and transfers them to a piece of silicone. A second piece of silicone seals the PZT in, creating a pliable, biocompatible material that's four times as efficient as previous flexible piezoelectrics. So far McAlpine has made only small pieces of the material, but he is now scaling up the process to make larger wafers suitable for use in implanted electronics. --Katherine Bourzac

2010 TR35 Winners

Alán Aspuru-Guzik

Simulating chemistry with quantum computers

Conor Madigan

Bringing down the price of OLED displays

Michael McAlpine

Powering electronics with human motion

Michelle Povinelli (video)

Predicting better photonic devices


More Innovators Under 35: